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Abstract. We investigate nonlocal-interaction energies on the space of probability measures.
We establish sharp conditions for the existence of minimizers for a broad class of nonlocal-
interaction energies. The condition is closely related to the notion of H-stability of pairwise
interaction potentials in statistical mechanics. Our approach uses the direct method of calculus
of variations.

1. Introduction

We consider the minimization of the nonlocal-interaction energy

(1.1) E[µ] :=

∫
RN

∫
RN

w(x− y) dµ(x)dµ(y)

over the space of probability measures P(RN ). Nonlocal-interaction energies arise naturally in
descriptions of systems of interacting particles, as well as continuum descriptions of systems
with long-range interactions. They play an important role in statistical mechanics [34, 36] and
descriptions of crystallization [1, 33]. For semi-convex interaction potentials w some systems
governed by the energy E can be interpreted as a gradient flow of the energy with respect to
Wasserstein metric and satisfy the nonlocal-interaction equation

(1.2)
∂µ

∂t
= 2 div (µ(∇w ∗ µ)) .

Applications of the equation include models of collective behavior of many-agent systems [6, 32],
granular media [5, 18, 38], self-assembly of nanoparticles [25, 26], and molecular dynamics
simulations of matter [24].

Although the choice of the interaction potential w depends on the phenomenon modeled by
either (1.1) or (1.2), the interaction between two agents/particles is often determined only by
the distance between them. This yields that the interaction potential w is radially symmetric,
i.e., w(x) = W (|x|) for some W : [0,+∞) → R ∪ {+∞}. Many potentials considered in the
applications are repulsive at short distances (W ′(r) < 0 for r small) and attractive at long dis-
tances (W ′(r) > 0 for r large). While purely attractive potentials lead to finite-time or infinite
time blow up [7] the attractive-repulsive potentials often generate finite-sized, confined aggre-
gations [23, 28, 30]. On the other hand in statistical mechanics and in studies of crystallization
it is the (attractive-repulsive) potentials that do not lead to confined states as the number of
particles increases which are of interest [34, 37]. This highlights the importance of obtaining
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criteria for existence of global minimizers of the energy, for it is precisely those potentials which
have a global minimizer that exhibit aggregation of particles into dense clumps.

The study of the nonlocal-interaction equation (1.2) in terms of well-posedness, finite or
infinite time blow-up, and long-time behavior has attracted the interest of many research
groups in the recent years [3, 4, 7, 8, 9, 10, 16, 17, 21, 23, 27, 28, 29]. The energy (1.1) plays an
important role in these studies as it governs the dynamics and as its (local) minima describe the
long-time asymptotics of solutions. It has been observed that even for quite simple attractive–
repulsive potentials the energy minimizers are sensitive to the precise form of the potential and
can exhibit a wide variety of patterns [27, 28, 40]. In [2] Balagué, Carrillo, Laurent, and Raoul
obtain conditions for the dimensionality of the support of local minimizers of (1.1) in terms of
the repulsive strength of the potential w at the origin. Properties of minimizers for a special
class of potentials which blow up approximately like the Newtonian potential at the origin have
also been studied [9, 15, 22, 23]. Particularly relevant to our study are the results obtained
by Choksi, Fetecau and one of the authors [19] on the existence of minimizers of interaction
energies in a certain form. There the authors consider potentials of the power-law form,
w(x) := |x|a/a− |x|r/r, for −N < r < a, and prove the existence of minimizers in the class of
probability measures when the power of repulsion r is positive. When the interaction potential
has a singularity at the origin, i.e., for r < 0, on the other hand, they establish the existence
of minimizers of the interaction energy in a restrictive class of uniformly bounded, radially
symmetric L1-densities satisfying a given mass constraint. Carrillo, Chipot and Huang [14]
also consider the minimization of nonlocal-interaction energies defined via power-law potentials
and prove the existence of a global minimizer by using a discrete to continuum approach. The
minimizers and their relevance to statistical mechanics were also considered in periodic setting
(and on bounded sets) by Süto [36].

Here (Theorems 3.1 and 3.2) we obtain criteria for the existence of minimizers in a very broad
class of potentials. We employ the direct method of the calculus of variations. In Lemma 2.2
we establish the weak lower-semicontinuity of the energy with respect to weak convergence
of measures. When the potential W grows unbounded at infinity (case treated in Theorem
3.1) this provides enough confinement for a minimizing sequence to ensure the existence of
minimizers. If W asymptotes to a finite value (case treated in Theorem 3.2) then there is a
delicate interplay between repulsion at some lengths (in most applications short lengths) and
attraction at other length scales (typically long) which establishes whether the repulsion wins
and a minimizing sequence spreads out indefinitely and “vanishes” or the minimizing sequence
is compact and has a limit. We establish a simple, sharp condition, (HE) on the energy that
characterizes whether a global minimizer exists. To establish compactness of a minimizing
sequence we use Lions’ concentration compactness lemma.

The condition (HE) is closely related to the notion of stability (or H-stability) used in
statistical mechanics [34]. Namely stability is a necessary condition for a many body system
of interacting particles to exhibit a macroscopic thermodynamical behavior. As we show in
Proposition 4.1 the condition (HE) is almost exactly the complement of H-stability. That is
if the energy (1.1) admits a global minimizer then the system of interacting particles is not
expected to have a thermodynamic limit.

While the conditions (H1) and (H2) are easy-to-check conditions on the potential W itself,
the condition (HE) is a condition on the energy and it is not always easy to verify. Due to
the above connection with statistical mechanics the conditions on H-stability (or lack thereof)
can be used to verify if (HE) is satisfied for a particular potential. We list such conditions in
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Section 4. However only few general conditions are available. It is an important open problem
to establish a more complete characterization of potentials W which satisfy (HE).

We finally remark that as this manuscript was being completed we learned that Cañizo,
Carrillo, and Patacchini [12] independently and concurrently obtained very similar conditions
for the existence of minimizers, which they also show to be compactly supported. The proofs
however are quite different.

2. Hypotheses and Preliminaries

The interaction potentials we consider are radially symmetric, that is, w(x) = W (|x|) for
some function W : [0,+∞)→ R ∪ {+∞}, and they satisfy the following basic properties:

(H1) W is lower-semicontinuous.

(H2) The function w(x) is locally integrable on RN .

Beyond the basic assumptions above, the behavior of the tail of W will play an important
role. We consider potentials which have a limit at infinity. If the limit is finite we can add a
constant to the potential, which does not affect the existence of minimizers, and assume that
the limit is zero. If the limit is infinite the proof of existence of minimizers is simpler, while if
the limit is finite an additional condition is needed. Thus we split the condition on behavior
at infinity into two conditions:

(H3a) W (r)→∞ as r →∞.

(H3b) W (r)→ 0 as r →∞.

Remark 2.1. By the assumptions (H1) and (H3a) or (H3b) the interaction potential W is
bounded from below. Hence

(2.1) CW := inf
r∈(0,∞)

W (r) > −∞.

If (H3a) holds, by adding −CW to W from now on we assume that W (r) > 0 for all r ∈ (0,∞)

As noted in the introduction the assumptions (H1), (H2) with (H3a) or (H3b) allow us
to handle a quite general class of interaction potentials w. Figure 1 illustrates a set of simple
examples of smooth potential profiles W that satisfy these assumptions.

In order to establish the existence of a global minimizer of E, for interaction potentials w
satisfying (H1), (H2) and (H3b), the following assumption on the interaction energy E is
needed:

(HE) There exists a measure µ̄ ∈ P(RN ) such that E[µ̄] 6 0.

We establish that the conditions (H1), (H2) and (H3a) or (H3b) imply the lower-semicontinuity
of the energy with respect to weak convergence of measures. We recall that a sequence of prob-
ability measures µn converges weakly to measure µ, and we write µn ⇀ µ, if for every bounded
continuous function φ ∈ Cb(RN ,R)∫

φdµn →
∫
φdµ as n→∞.
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(a) Interaction potentials satisfying (H1), (H2), and (H3a)
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(b) Interaction potentials satisfying (H1), (H2), and (H3b)

Figure 1. Generic examples of W (|x|).

Lemma 2.2 (Lower-semicontinuity of the energy). Assume W : [0,∞)→ (−∞,∞] is a lower-
semicontinuous function bounded from below. Then the energy E : P(Rn)→ (−∞,∞] defined
in (1.1) is weakly lower-semicontinuous with respect to weak convergence of measures.

Proof. Let µn be a sequence of probability measures such that µn ⇀ µ as n → ∞. Then
µn × µn ⇀ µ × µ in the set of probability measures on RN × RN . If w is continuous and
bounded∫

RN

∫
RN

w(x− y) dµn(x)dµn(y) −→
∫
RN

∫
RN

w(x− y) dµ(x)dµ(y) as n→∞.

So, in fact, the energy is continuous with respect to weak convergence. On the other hand, if
w is lower-semicontinuous and w is bounded from below then the weak lower-semicontinuity
of the energy follows from the Portmanteau Theorem [39, Theorem 1.3.4]. �

We remark that the assumption on boundedness from below is needed since if, for example,
W (r) = −r then for µn = (1 − 1

n)δ0 + 1
nδn the energy is E(µn) = −1 for all n ∈ N, while

µn ⇀ δ0 which has energy E(δ0) = 0.

Finally, we state Lions’ concentration compactness lemma for probability measures [31], [35,
Section 4.3]. This lemma is the main tool in verifying that an energy-minimizing sequence is
precompact in the sense of weak convergence of measures.

Lemma 2.3 (Concentration-compactness lemma for measures). Let {µn}n∈N be a sequence of
probability measures on RN . Then there exists a subsequence {µnk

}k∈N satisfying one of the
three following possibilities:

(i) (tightness up to translation) There exists yk ∈ RN such that for all ε > 0 there exists
R > 0 with the property that∫

BR(yk)
dµnk

(x) > 1− ε for all k.
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(ii) (vanishing) lim
k→∞

sup
y∈RN

∫
BR(y)

dµnk
(x) = 0, for all R > 0;

(iii) (dichotomy) There exists α ∈ (0, 1) such that for all ε > 0, there exist a number R > 0
and a sequence {xk}k∈N ⊂ RN with the following property:

Given any R′ > R there are nonnegative measures µ1
k and µ2

k such that

0 6 µ1
k + µ2

k 6 µnk
,

supp(µ1
k) ⊂ BR(xk), supp(µ2

k) ⊂ RN \BR′(xk) ,

lim sup
k→∞

(∣∣∣∣α− ∫
RN

dµ1
k(x)

∣∣∣∣+

∣∣∣∣(1− α)−
∫
RN

dµ2
k(x)

∣∣∣∣) 6 ε.
3. Existence of Minimizers

In this section we prove the existence of a global minimizer of E. We use the direct method of
the calculus of variations and utilize Lemma 2.3 to eliminate the “vanishing” and “dichotomy”
of an energy-minimizing sequence. The techniques in our proofs, though, depends on the
behavior of the interaction potential at infinity. Thus we prove two existence theorems: one
for potentials satisfying (H3a) and another one for those satisfying (H3b).

Theorem 3.1. Suppose W satisfies the assumptions (H1), (H2) and (H3a). Then the energy
(1.1) admits a global minimizer in P(RN ).

Proof. Let {µn}n∈N be a minimizing sequence, that is, limn→∞E[µn] = infµ∈P(RN )E[µ].

Suppose {µk}k∈N has a subsequence which “vanishes”. Since that subsequence is also a
minimizing sequence we can assume that {µk}k∈N vanishes. Then for any ε > 0 and for any
R > 0 there exists K ∈ N such that for all k > K and for all x ∈ RN

µk(RN \BR(x)) > 1− ε.

This implies that for k > K,∫∫
|x−y|>R

dµk(x)dµk(y) =

∫
RN

(∫
RN\BR(x)

dµk(y)

)
dµk(x) > 1− ε.

Given M ∈ R, by condition (H3a) there exists R > 0 such that for all r > R, W (r) > M .
Consider ε ∈ (0, 1

2) and K corresponding to ε and R. Since W > 0 by Remark 2.1,

E[µk] =

∫∫
|x−y|6R

W (|x− y|) dµk(x)dµk(y) +

∫∫
|x−y|>R

W (|x− y|) dµk(x)dµk(y)

>
∫∫
|x−y|>R

W (|x− y|) dµk(x)dµk(y)

> (1− ε)M.

Letting M → ∞ implies E[µk] → ∞. This contradicts the fact that µk is a subsequence of a
minimizing sequence of E. Thus, “vanishing” does not occur.

Next we show that “dichotomy” is also not an option for a minimizing sequence. Sup-
pose, that “dichotomy” occurs. As before we can assume that the subsequence along which
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dichotomy occurs is the whole sequence. Let R, sequence xk and measures

µ1
k + µ2

k 6 µk.

be as defined in Lemma 2.3(ii). For any R′ > R , using Remark 2.1, we obtain

lim inf
k→∞

E[µnk
] > lim inf

k→∞

∫
BR(xnk

)

∫
Bc

R′ (xnk
)
W (|x− y|) dµ2

k(x)dµ1
k(y)

> inf
r>R′−R

W (r)α(1− α),

where Bc
R′(xnk

) simply denotes RN \BR′(xnk
).

By (H3a), letting R′ →∞ yields that

lim inf
k→∞

E[µnk
] >∞,

which contradicts the fact that µk is an energy minimizing sequence.
Therefore “tightness up to translation” is the only possibility. Hence there exists yk ∈ RN

such that for all ε > 0 there exists R > 0 with the property that∫
B(yk,R)

dµnk
(x) > 1− ε for all k.

Let

µ̃nk
:= µnk

(· − yk).
Then the sequence of probability measures {µ̃nk

}k∈N is tight. Since the interaction energy is
translation invariant we have that

E[µ̃nk
] = E[µnk

].

Hence, {µ̃nk
}k∈N is also an energy-minimizing sequence. By the Prokhorov’s theorem (cf. [11,

Theorem 4.1]) there exists a further subsequence of {µ̃nk
}k∈N which we still index by k, and a

measure µ0 ∈ P(RN ) such that

µ̃nk
⇀µ0

in P(RN ) as k →∞.

Since the energy in lower-semicontinuous with respect to weak convergence of measures, by
Lemma 2.2, the measure µ0 is a minimizer of E. �

The second existence theorem involves interaction potentials which vanish at infinity.

Theorem 3.2. Suppose W satisfies the assumptions (H1), (H2) and (H3b). Then the energy
E, given by (1.1), has a global minimizer in P(RN ) if and only if it satisfies the condition (HE).

Proof. Let us assume that E satisfies condition (HE). As before, our proof relies on the direct
method of the calculus variations for which we need to establish precompactness of a minimizing
sequence.

Let {µn}n∈N be a minimizing sequence and let

I := inf
µ∈P(RN )

E[µ].

Condition (HE) implies that I 6 0. If I = 0 then by assumption (HE) there exists µ̄ with
E[µ̄] = 0, which is the desired minimizer. Thus, we focus on case that I < 0. Hence there
exists µ̄ for which E[µ̄] < 0. Also note that by Remark 2.1, I > −∞.
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Suppose the subsequence {µnk
}k∈N of the minimizing sequence {µn}n∈N “vanishes”. Since

that subsequence is also a minimizing sequence we can assume that {µk}k∈N vanishes. That
is, for any R > 0

(3.1) lim
k→∞

sup
x∈RN

∫
BR(x)

dµk(y) = 0.

Let

W (R) = inf
r>R

W (r).

Since W (r) → 0 as r → ∞, W (r) → 0 as r → ∞ and W (r) 6 0 for all r > 0. Then we have
that

E[µk] =

∫∫
|x−y|>R

W (|x− y|) dµk(x)dµk(y) +

∫∫
|x−y|6R

W (|x− y|) dµk(x)dµk(y)

>W (R) + CW

∫∫
|x−y|6R

dµk(x)dµk(y)

= W (R) + CW

∫
RN

(∫
BR(x)

dµk(y)

)
dµk(x).

Vanishing of the measures, (3.1), implies that lim infk→∞E[µk] >W (R) for all R > 0. Taking
the limit as R→∞ gives

lim inf
k→∞

E[µk] > 0.

This contradicts the fact that the infimum of the energy, namely I, is negative. Therefore
“vanishing” in Lemma 2.3 does not occur.

Suppose the dichotomy occurs. Let α be as in Lemma 2.3 and CW be the constant defined
in (2.1). Let ε > 0 be such that

(3.2) ε <
|I|

64|CW |
min

{
1

α
− 1,

1

1− α
− 1

}
and let R′ be such that

(3.3) |W (R′ −R)| = | inf
r>R′−R

W (r)| < |I|
32

min

{
1

α
− 1,

1

1− α
− 1

}
.

As in the proof of Theorem 3.1, we can assume that dichotomy occurs along the whole sequence.
Let µ1

k and µ2
k be measures described in Lemma 2.3. Let νk = µk − (µ1

k + µ2
k). Note that νk is

a nonnegative measure with |νk| < ε, where |νk| = νk(RN ).
Let B[·, ·] denote the symmetric bilinear form

B[µ, ν] := 2

∫
RN

∫
RN

W (|x− y|) dµ(x)dν(y).

By the definition of energy

E(µk) = E(µ1
k) + E(µ2

k) +B(µ1
k, µ

2
k) +B(µ1

k + µ2
k, νk) + E(νk)

> E(µ1
k) + E(µ2

k)− |W (R′ −R)| − 2|CW |ε
(3.4)

where we used that the supports of µ1
k and µ2

k are at least R′ −R apart. We can also assume,

without the loss of generality, that E(µk) <
1
2I for all k. Let αk = |µ1

k|, βk = |µ2
k|.
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Let us first consider the case that 1
αk
E(µ1

k) 6
1
βk
E(µ2

k). Note that the energy has the

following scaling property:

E[cσ] = c2E[σ]

for any constant c > 0 and measure σ. Our goal is to show that for some λ > 0, for all large
enough k, E( 1

αk
µ1
k) < E(µk)−λ|I| which contradicts the fact that µk is a minimizing sequence.

Let us consider first the subcase that E(µ2
k) > 0 along a subsequence. By relabeling we can

assume that the subsequence is the whole sequence. From (3.2), (3.3), and (3.4) it follows that
1
αk
E(µ1

k) < I/4 for all k. Using the estimates again, we obtain

E(µk)− E
(

1

αk
µ1
k

)
>

(
1− 1

α2
k

)
E
(
µ1
k

)
− |W (R′ −R)| − 2|CW |ε

>

(
1

αk
− 1

)
|I|
4
− |W (R′ −R)| − 2|CW |ε

>

(
1

α
− 1

)
|I|
16
.

Thus µk is not a minimizing sequence. Contradiction.
Let us now consider the subcase E(µ2

k) 6 0 for all k. Using (3.4) and βk
αk
E(µ1

k) 6 E(µ2
k) we

obtain
I

2
> E(µk) >

(
1 +

βk
αk

)
E(µ1

k)− |W (R′ −R)| − 2|CW |ε.

From (3.2) and (3.3) follows that for all k

1

αk
E(µ1

k) 6
I

8
.

Combining with above inequalities gives

E(µk)− E
(

1

αk
µ1
k

)
>

(
1 +

βk
αk
− 1

α2
k

)
E(µ1

k)− |W (R′ −R)| − 2|CW |ε

>

(
1

αk
− αk − βk

)
|I|
8
−
(

1

α
− 1

)(
|I|
32

+
|I|
32

)
>
|I|
32

(
1

α
− 1

)
for k large enough. This contradicts the assumption that µk is a minimizing sequence.

The case 1
αk
E(µ1

k) >
1
βk
E(µ2

k) is analogous. In conclusion the dichotomy does not occur.

Therefore “tightness up to translation” is the only possibility. As in the proof of Theorem 3.1,
we can translate measures µnk

to obtain a tight, energy-minimizing sequence µ̃nk
.

By Prokhorov’s theorem, there exists a further subsequence of {µ̃nk
}k∈N, still indexed by k,

such that

µnk
⇀ µ0 as k →∞

for some measure µ0 ∈ P(RN ) in P(RN ) as k →∞. Therefore, by lower-semicontinuity of the
energy, µ0 is a minimizer of E in the class P(RN ).

We now show the necessity of condition (HE). Assume that E[µ] > 0 for all µ ∈ P(RN ).
To show that the energy E does not have a minimizer consider a sequence of measures which
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“vanishes” in the sense of Lemma 2.3(ii). Let

ρ(x) =
1

ωN
χB1(0)(x),

where ωN denotes the volume of the unit ball in RN and χBR(0) denotes the characteristic
function of BR(0), the ball of radius R centered at the origin. Consider the sequence

ρn(x) =
1

nN
ρ
(x
n

)
for n > 1. Note that ρn are in P(RN ). We estimate

0 < E[ρn] =
1

ω2
Nn

2N

∫
Bn(0)

∫
Bn(0)

W (|x− y|) dxdy

6
1

ω2
Nn

2N

∫
Bn(0)

(∫
Bn(y)

|W (|x|)| dx

)
dy

6
1

ωNnN

(∫
BR(0)

|W (|x|)| dx+

∫
B2n(0)\BR(0)

|W (|x|)| dx

)

6
C(R)

ωNnN
+

2N

ωN
sup
r>R
|W (r)|.

Since supr>R |W (r)| → 0 as R→∞, for any ε > 0 we can choose R so that 2N

ωN
supr>R |W (r)| <

ε
2 . We can then choose n large enough for C(R)

ωNnN < ε
2 to hold. Therefore limn→∞E[ρn] = 0,

that is, infµ∈P(RN )E[µ] = 0. However, since E[·] is positive for any measure in P(RN ) the
energy does not have a minimizer. �

4. Stability and Condition (HE)

The interaction energies of the form (1.1) have been an important object of study in statis-
tical mechanics. For a system of interacting particles to have a macroscopic thermodynamic
behavior it is needed that it does not accumulate mass on bounded regions as the number of
particles goes to infinity. Ruelle called such potentials stable (a.k.a. H-stable). More precisely,
a potential W : [0,∞) → (−∞,∞] is defined to be stable if there exists B ∈ R such that for
all n and for all sets of n distinct points {x1, . . . , xn} in RN

(4.1)
1

n2

∑
16i<j6n

w(xi − xj) > −
1

n
B.

We show that for a large class of potentials the stability is equivalent with nonnegativity of
energies. Our result is a continuum analogue of a part of Lemma 3.2.3 [34].

Proposition 4.1 (Stability conditions). Let W : [0,∞) → R be an upper-semicontinuous
function such that W is bounded from above or there exists R such that W is nondecreasing
on [R,∞). Then the conditions

(S1) w is a stable potential as defined by (4.1),
(S2) for any probability measure µ ∈ P(RN ), E(µ) > 0

are equivalent.
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Note that all potentials considered in the proposition are finite at 0. We expect that the
condition can be extended to a class of potentials which converge to infinity at zero. Doing so
is an open problem. We also note that condition (S2) is not exactly the complement of (HE),
as the nonnegative potentials whose minimum is zero satisfy both conditions. Such potentials
indeed exist: for example consider any smooth nonnegative W such that W (0) = 0. Then the
associated energy is nonnegative and E(δ0) = 0 so any singleton is an energy minimizer. Note
that E satisfies both (HE) and stability. To further remark on connections with statistical
mechanics we note that such potentials W are not super-stable, but are tempered if W decays
at infinity (both notions are defined in [34]).

Proof. To show that (S2) implies (S1) consider µ = 1
n

∑n
i=1 δxi . Then from E(µ) > 0 it follows

that 1
n2

∑
16i<j6nw(xi − xj) > − 1

2nW (0) so (S1) holds with B = 1
2W (0).

We now turn to showing that (S1) implies (S2). Let us recall the definition of Lévy–
Prokhorov metric, which metrizes the weak convergence of probability measures: Given prob-
ability measures ν and σ

dLP (ν, σ) = inf{ε > 0 : (∀A− Borel) ν(A) 6 σ(A+ ε) + ε and σ(A) 6 ν(A+ ε) + ε}

where A+ ε = {x : d(x,A) < ε}.
For a given measure µ, we first show that it can be approximated in the Lévy–Prokhorov

metric by an empirical measure of a finite set with arbitrarily many points. That is, we show
that for any ε > 0 and any n0 there exists n > n0 and a set of distinct points X = {x1, . . . , xn}
such that the corresponding empirical measure µX = 1

n

∑n
j=1 δxj satisfies dLP (µX , µ) < ε.

Let ε > 0. We can assume that ε < 1
2 . There exists R > 0 such that for QR = [−R,R]N ,

µX(RN\QR) < ε
2 . For integer l such that

√
N 2R

l < ε divide QR into lN disjoint cubes Qi,

i = 1, . . . , lN with sides of length 2R/l. While cubes have the same interiors, they are not
required to be identical, namely some may contain different parts of their boundaries, as
needed to make them disjoint. Note that the diameter of each cube,

√
N 2R

l , is less than ε.

Let n > n0 be such that lN

n < ε
2 . Let p = 1

n . For i = 1, . . . , lN let pi = µ(Qi), ni = bpinc,
and qi = nip. Note that 0 6 pi − qi 6 p and thus sq =

∑
i qi >

∑
i pi − lNp > 1 − ε

2 .

In each cube Qi place ni distinct points and let X̃ be the set of all such points. Note that
ñ =

∑
i ni = sqn > (1 − ε)n. Let X̂ be an arbitrary set of n − ñ distinct points in Q2R\QR.

Let X = X̃ ∪ X̂. Note that X is a set of n distinct points. Then for any Borel set A

µ(A) 6
∑

i : µ(A∩Qi)>0

µ(Qi) +
ε

2
6

∑
i : µ(A∩Qi)>0

(µX(Qi) + p) +
ε

2
6 µX(A+ ε) + ε.

Similarly

µX(A) 6 µ(A+ ε) + ε.

Therefore dLP (µ, µX) 6 ε.
Consequently there exists a sequence of sets Xm with n(m) points satisfying n(m)→∞ as

m→∞ for which the empirical measure µm = µXm converges weakly µm ⇀ µ as m→∞. By
assumption (S1) ∫∫

x 6=y
W (x− y)dµm(x)dµXm(y) > − 1

n(m)
B.
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Let us first consider the case that W is an upper-semicontinuous function bounded from above.
It follows from Lemma 2.2 that the energy E is an upper-semicontinuous functional. Therefore

E(µ) > lim sup
m→∞

E(µm) > lim sup
m→∞

− 1

n(m)
(B −W (0)) = 0

as desired.
If W is an upper-semicontinuous function such that there exists R such that W is nonde-

creasing on [R,∞) we first note that we can assume that W (r)→∞ as r →∞, since otherwise
W is bounded from above which is covered by the case above. If µ is a compactly supported
probability measure then there exists L such that for all m, suppµm ⊆ [−L,L]N . Since W is
upper-semicontinuous it is bounded from above on compact sets and thus upper-semicontinuity
of the energy holds. That is E(µ) > lim supm→∞E(µm) > 0 as before.

If µ is not compactly supported it suffices to show that there exists a compactly supported
measure µ̃ such that E(µ) > E(µ̃), since by above we know that E(µ̃) > 0. Note that since
E(1

2(δx + δ0)) > 0, W (|x|) > −W (0). Therefore W is bounded from below by −W (0) and
W (0) > 0.

Since W (r)→∞ as r →∞ there exists R1 > R such that W (R1) > max{1,maxr6R1 W (r)}
and m1 = µ(BR1(0)) > 7

8 . Let R2 be such that W (R2) > 2W (R1), and define the constants

m2 = µ(BR2(0)\BR1(0)) and m3 = µ(RN\BR2(0)). Note that m1 + m2 + m3 = 1. Consider
the mapping

P (x) =

{
x if |x| 6 R2

0 if |x| > R2.

Let µ̃ = P]µ. Estimating the interaction of particles between the regions provides:

E(µ̃) 6 E(µ) + 2W (0)m2
3 + 2(W (R2) +W (0))m2m3 − 2(W (R2)−W (R1))m1m3

6 E(µ) +W (R2)m3(m3 + 4m2 −m1) < E(µ).

�

As we showed in Theorem 3.2 the property (HE) is necessary and sufficient for the existence
of a global minimizer when E is defined via an interaction potential satisfying (H1), (H2) and
(H3b). The property (HE) is posed as a condition directly on the energy E, and can be
difficult to verify for a given W . It is then natural to ask what conditions the interaction
potential W needs to satisfy so that the energy E has the property (HE). In other words, how
can one characterize interaction potentials w for which E admits a global minimizer? We do
not address that question in detail, but just comment on the partial results established in the
context of H-stability of statistical mechanics and how they apply to the minimization of the
nonlocal-interaction energy.

Perhaps the first condition which appeared in the statistical mechanics literature states that
absolutely integrable potentials which integrate to a negative number over the ambient space
are not stable (cf. [20, Theorem 2] or [34, Proposition 3.2.4]). In our language these results
translate to the following proposition.

Proposition 4.2. Consider an interaction potential w(x) = W (|x|) where W satisfies the
hypotheses (H1), (H2) and (H3b). If w is absolutely integrable on RN and∫

RN

W (|x|) dx < 0,
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then the energy E defined by (1.1) satisfies the condition (HE).

Proof. Since
∫
RN W (|x|) dx < 0, given ε > 0 there exists a constant R > 0 such that∫

BR(0)
W (|x|) dx < ε.

Consider the function ρ(x) := 1
ωNRN χBR(0)(x), i.e., the scaled characteristic function of the ball

of radius R. Since ρ ∈ L1(RN ) with ‖ρ‖L1(RN ) = 1 it defines a probability measure measure.
Estimating at the energy of ρ we obtain

E[ρ] =
1

ω2
NR

2N

∫
BR(0)

∫
BR(0)

W (|x− y|) dxdy

=
1

ω2
NR

2N

∫
BR(0)

(∫
BR(y)

W (|x|) dx

)
dy < ε.

Letting ε→ 0 shows that the energy E satisfies (HE). �

An alternative condition for instability of interaction potential is given in [13, Section II].
This condition, which we state and prove in the following proposition, extends the result of
Proposition 4.2 to interaction potentials which are not absolutely integrable.

Proposition 4.3. Suppose the interaction potential W satisfies the hypotheses (H1), (H2)
and (H3b). If there exists p > 0 for which

(4.2)

∫
RN

W (|x|) e−p2|x|2 dx < 0,

then the energy E defined by (1.1) satisfies the condition (HE).

Proof. Let p > 0 be given such that the inequality (4.2) holds. Since the case p = 0 has been
considered in Proposition 4.2 we can assume p > 0. Consider the function

ρ(x) =
pN

πN/2
e−2p2|x|2 .

Clearly ρ ∈ L1(RN ) and ‖ρ‖L1(RN ) = 1; hence, it defines a probability measure on RN . Using

the linear transformation on R2N given by

u = x− y, v = x+ y

for x and y in RN and denoting by C the Jacobian of this transformation we get that

E[ρ] =

∫
RN

∫
RN

W (|x− y|) e−2p2|x|2 e−2p2|y|2 dxdy

= C

∫
RN

∫
RN

W (|u|) e−p2|u+v|2/2 e−p
2|u−v|2/2 dudv

= C

∫
RN

∫
RN

W (|u|) e−p2(|u|2+|v|2) dudv

= C

∫
RN

(∫
RN

W (|u|) e−p2|u|2 du
)
e−p

2|v|2 dv < 0.

Hence, the energy E satisfies (HE). �
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Remark 4.4. Another useful criterion can be obtained by using the Fourier transform, as also
noted in [34]. Namely if w ∈ L2(RN ), for measure µ that has a density ρ ∈ L2(RN ), by
Plancharel’s theorem

E(µ) =

∫
RN

∫
RN

w(x− y) dµ(x)dµ(y) =

∫
RN

ŵ(ξ)|ρ̂(ξ)|2dξ.

So if real part of ŵ is positive, the energy does not have a minimizer.
This criterion can be refined. By Bochner’s theorem the Fourier transforms of finite non-

negative measures are precisely the positive definite functions. Thus we know which family of
functions, ρ̂ belongs to. Hence we can formulate the following criterion:

If w ∈ L2(RN ) and there exists a positive definite complex valued function ψ such that∫
ŵ(ξ)|ψ2(ξ)|dξ 6 0 then the energy E satisfies the condition (HE).
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